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We investigate the properties of conduction electrons in single-walled armchair carbon nanotubes in the
presence of both transverse electric and magnetic fields. We find that these fields provide a controlled means of
tuning low-energy band-structure properties such as inducing gaps in the spectrum, breaking various symme-
tries, and altering the Fermi velocities. We show that the fields can strongly affect electron-electron interactions
yielding tunable Luttinger-liquid physics, the possibility of spin-charge-band separation, and a competition
between spin-density-wave and charge-density-wave orders. For short tubes, the fields can alter boundary
conditions and associated single-particle level spacings as well as quantum dot behavior.
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I. INTRODUCTION

The astounding range of experimental and theoretical
studies performed on carbon nanotubes1,2 has revealed a
spectrum of physics characteristic of strongly correlated low-
dimensional electronic systems.3 The underlying graphene
lattice structure of these tubes uniquely affects band struc-
ture, effective dimensionality, Coulomb interaction effects,
and the quantum dot behavior exhibited by short nanotube
segments. The band structure shows differing behavior de-
pending on various factors such as chirality, applied gate
potentials, boundary conditions at the tube ends, and me-
chanical stress.4,5 In single-walled armchair nanotubes
�SWNT�,6 the entities of interest here, gapless linearly dis-
persing modes endow the nanotube with its peculiar quantum
wire properties. As described theoretically and ascertained
experimentally, interactions within the modes of this effec-
tively one-dimensional �1D� system cause it to behave as a
Luttinger liquid characterized by non-Ohmic
conductances.3,7–10 Tubes placed between tunnel barriers
act as quantum dots,11,12 which, while displaying zero-
dimensional physics such as Coulomb-blockade behavior, re-
tain some higher dimensional traits such as hosting plasmons
typical of one dimension and band degrees of freedom attrib-
uted to the underlying graphene lattice. Potentially invalu-
able to applications, these nanotube quantum dots have been
proposed as elements of quantum devices and the quantum
states of blockaded electrons have been regarded as candi-
dates for units of quantum information.13 In each of these
aspects, the presence of applied fields can dramatically alter
the nanotube’s behavior; here we present an extensive study
of the effects of electric and magnetic fields applied trans-
versally to the axis of the nanotube.

At the level of the band structure, it has been shown that
a parallel magnetic field can have the striking effect of con-
verting a metallic tube to a semiconducting one by way of
inducing a gap,14 and vice versa, an effect discernible in
conductance, Coulomb-blockade, and scanning tunneling mi-
croscope �STM� measurements. Here, instead of a parallel
field, we discuss transverse field configurations �both electric
and magnetic� and the conditions under which a band gap

opens up or the spectrum remains gapless in armchair
SWNTs. In the latter case, we demonstrate, via band-
structure calculations, simultaneous breaking of the valley
degeneracy �of the two distinct Dirac points�, the left-right-
mover degeneracy, and the particle-hole symmetry. More-
over, the fields yield a non-negligible reduction in the Fermi
velocity of conduction electrons traveling along the tube. We
show that, for certain configurations of fields, the ground
state of the tube can even be made to carry finite current.

Transverse fields provide an excellent means of altering
the ratio of interaction strength to the Fermi energy in
SWNTs. This makes nanotubes potentially the only systems
to date in which the associated Luttinger-liquid physics can
be tuned in a controlled fashion. As described in previous
work, either an electric field15 or a magnetic field16,17 alone
suffices to change the value of the Luttinger-liquid parameter
from that measured in field-free environments. The magni-
tude of the electric fields required to bring about a significant
change are well within current experimental reach.18 Here,
we find that our approach reproduces these results. We show
that such a tuning of Luttinger parameters can mediate a
transition from the system showing tendencies toward spin-
density-wave �SDW� ordering to that of charge-density-wave
�CDW� ordering. Furthermore, in addition to the tuning of
the Luttinger parameter presented in previous works for the
net charge density,15–17 we find that Luttinger-type interac-
tions become manifest in modes associated with the density
differences between nanotube bands as well. Thus we predict
that, akin to spin-charge separation, transverse fields can in-
duce a spin-charge-band separation wherein the three de-
grees of freedom move at different velocities.

The above results are discussed in the case of an infinite
system. For short tubes or finite length segments formed by
tunnel barriers, boundary effects need to be taken into ac-
count. We find that applied fields influence multiple aspects
of short nanotubes. First, fields can alter the single-particle
energy-level spacing of the tube. Here, we carefully account
for the effect of the tube ends in the case that the left and
right movers travel at different speeds. Second, the charging
energies become field dependent, and third, the plasmon
spectrum varies in accordance with the first two effects. We
have conducted a comprehensive analysis of the short nano-
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tube as a finite-sized Luttinger liquid and show how all three
effects can be captured. Within this description, we discuss
the structure of field-dependent Coulomb-blockade peaks,
and how the presence of both electric and magnetic fields
acts as a means of manipulating quantum states of the dot
�the effect of a magnetic field alone has recently been dis-
cussed by Bellucci and Onorato19�.

The present work combines several commonly used the-
oretical tools in studying field-induced effects. First, we con-
duct a detailed analysis of SWNT band structure in the pres-
ence of transverse electric and magnetic fields. This
approach differs from that of Refs. 15–17 and 19 in that we
derive the low-energy spectrum directly from the tight-
binding model rather than starting with the Dirac equation
and its linear spectrum as an input. Hence our approach in
calculating the band structure is similar to that presented in
Ref. 20 in which the effects of a transverse magnetic field
were examined. This more involved approach has the advan-
tage of tracking the field-induced shift in Fermi momentum
which turns out to have important implications for quantum
dot physics. Our band-structure calculation is then used as an
input for a detailed Luttinger-liquid calculation, similar in
spirit to Refs. 8 and 19. Thus, we derive an effective one-
dimensional description of the field-induced effects in terms
of quadratic terms in the Hamiltonian which involve charge
current and the charging asymmetry between the two Fermi
points. We find that this Luttinger-liquid description provides
a natural framework in which to discuss quantum dot phys-
ics. A similar calculation in the absence of fields can be
found in Ref. 7. Here, in addition to the Luttinger analysis,
we account for a wide range of boundary conditions that give
rise to different Coulomb-blockade landscapes.

The outline of this paper is as follows. In Sec. II we
present the formulation and results of our band-structure cal-
culation. In Sec. III we formulate an effective one-
dimensional Hamiltonian which takes into account field ef-
fects. We bosonize this Hamiltonian, describing interaction
effects in terms of Luttinger-liquid physics. In Sec. IV we
investigate the various Luttinger-liquid phases and the feasi-
bility of using fields to access such phases. In Sec. V we
discuss field-tuned quantum dot physics. Finally, in Sec. VI
we present the highlights of our results and discuss their
relevance to experiments.

II. BAND STRUCTURE IN TRANSVERSE FIELDS

We briefly recapitulate the band structure of an infinitely
long armchair tube in the absence of any fields.5 The elec-
tronic properties of graphene are well described by a tight-
binding model in which electrons hop between nearest
neighbors of the underlying hexagonal bipartite lattice �sub-
lattices here are labeled A and B� with an associated energy
�the hopping integral� of t�3 eV. An armchair carbon nano-
tube can be regarded as a sheet of graphene rolled along the
�n ,n� direction �for notation of the chirality, see, e.g., Ref. 5�,
denoted by ŝ. This gives rise to states of quantized momen-
tum ks= �0,2� /L , . . . ,2��2n−1� /L�, where L=�3na is
the circumference of the tube, and a=�3ac, where ac
�0.142 nm is the nearest carbon-carbon distance. The re-

sulting series of one-dimensional bands can be described by
the wave vectors k� = �kx , 2��

L �, where kx is the quasimomen-
tum parallel to the tube’s axis and �� is the state’s angular
momentum about the tube’s circumference. A convenient set
of basis states is given by the following linear combination
of atomic orbitals

��A/B
� � =

1
�2n

	
R� �A/B

eik�·R� �R� � , �1�

where �R� � is the �-electronic state of the atom located at R� .
The sum runs over the n atoms in the unit cell that belong to
either the A or B sublattice. At half filling, the associated
dispersion has low-energy excitations near the so-called
Dirac points of the form �= ��vF�k−�kF�, where vF=

�3ta
2�

�8�105 m /s, kF=4� /3a, and �=�. Thus, k=�kF label
the two inequivalent Fermi points.

The setup of interest is shown in Fig. 1. An external mag-
netic field is applied in the negative y direction; an applied
�transverse� electric field makes an angle � with the magnetic
field. These fields give rise to scalar and vector potentials

U�s� = �e�ER cos
 s

R
− �� , �2�

A� = − Bzx̂ , �3�

respectively, where E and B are the electric and magnetic
field strengths �R=L /2��. The x axis runs parallel to the
tube’s axis and the additional coordinate s measures the cir-
cumferential distance starting from the negative y axis �a
positive value of s corresponds to a clockwise rotation as one
looks along the x axis in the negative direction�.

These external potentials are easily accommodated within
the tight-binding approach. In Eq. �3� we have selected a
gauge that is independent of x and thus kx remains a good
quantum number. The hopping matrix elements in the pres-
ence of the fields are given by

FIG. 1. �Color online� A �5,5� carbon nanotube in the presence
of transverse magnetic �pointing in the −ŷ� and electric fields. The
carbon atoms belonging to the A and B sublattices are indicated by
dark �blue� and light �green� shading, respectively.
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��A
���H��B

�� = −
t

2n
	

R� �B,R���A

ei�k�·R� −k��·R���+�ie/���GR−GR��, �4�

where the sum runs over nearest neighbors R� and R� �, and

Gj − Gi � 

0

1

d	�r�i − r� j� · A� �r� + 	�r�i − r� j�� �5�

is the Aharonov-Bohm phase associated with the magnetic
field Ref. 5. We have assumed that the hopping integral t is
independent of the electric field. The dimensionless param-
eter b is given by b=B

�3�e�L2

4�2�
. Numerically, for an �n ,n� nano-

tube, the magnetic field in tesla is related to the dimension-
less parameter b via B�8.1�104�b /n2 T. The scalar
potential gives rise to an on-site potential described by the
matrix element,

��A
���H��A

�� = ��B
���H��B

�� =
tU

2
e�i�, �6�

for ��=�
1 mod n where U= �e�ER / t. The electric field
strength in V/nm is related to U by E=Ut / �e�R
�42U /n V /nm for a tube with chiral vector �n ,n�. That
these matrix elements mix states of different angular momen-
tum has a straightforward classical analog: a charged particle
on the surface of a cylinder will circulate around the tube’s
circumference as a result of the applied fields.

We have studied the effects of the fields perturbatively in
b and U. In the vicinity of the Fermi points, the left- and
right-moving bands are nearly degenerate so care must be
taken in applying perturbation theory. The details of this cal-
culation are presented in Appendix A where we carry out
perturbation theory to second order. There are three cases of
interest that we summarize below. An illustration of these
three cases is shown in Figs. 2–5. While some of the effects
discussed are rather small for standard SWNTs, we note that

our band-structure analysis can be applied to multiwalled
nanotubes as well in which case a larger radius yields more
pronounced effects.

A. Case of E=0 or B=0

For a single field, the most salient features of our band-
structure calculation are the reduction in Fermi velocity and
the shift in Fermi momentum. Semiclassically, the reduction
in Fermi velocity can be ascribed to the deflection of the
electrons by the fields leading to a reduction in the velocity
component along the tube. Furthermore the bands remain
gapless.

For a magnetic field, we find a reduced Fermi velocity
given by
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FIG. 2. �Color online� Spectrum of a �5,5� carbon nanotube near
the �=+ Dirac Fermi point �field-free value kF=�4� /3a indicated
by the vertical line� in the presence of an external transverse electric
field with U0 / t=0 �black dotted�, 0.2 �red dot-dashed�, and 0.4
�blue solid� as the crossing moves to the right. The horizontal axis
indicates the value of q, where q=ka; the vertical axis is given in
units of t, the hopping integral �t�3 eV�.
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FIG. 3. �Color online� Spectrum of a �5,5� carbon nanotube near
the �=+ Dirac Fermi point �field-free value kF=�4� /3a indicated
by the vertical line� in the presence of a magnetic field b=0 �black
dotted�, 0.2 �red dot-dashed�, and 0.4 �blue solid� �as the crossings
move to the right�. The horizontal axis indicates the value of q,
where q=ka; the vertical axis is given in units of t, the hopping
integral �t�3 eV�. While the shift in Fermi point is clear, the
change in the slope �cf. Eq. �7�� is small and difficult to discern.
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FIG. 4. �Color online� Spectrum of a �5,5� carbon nanotube near
�=− Dirac Fermi point �field-free value �kF=−4� /3a indicated by
the vertical dashed line� in the presence of transverse electric and

magnetic fields �U / t=0.2 and b=0.4�. The angle between E� and B�

being 0 �black dotted�, � /4 �red dot-dashed�, and � /2 �blue solid�
�from outer to inner�. The horizontal axis indicates the value of q,
where q=ka; the vertical axis is given in units of t, the hopping
integral �t�3 eV�.
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ṽF = vF�1 − �v1b2� . �7�

The first-order correction in b vanishes because ṽF must be
an even function of b by symmetry. The term �v1 is a func-
tion of n and is given by Eq. �A4b�. This term depends on the
geometric details of an armchair tube; for large tubes �v1
�1 /3. An experimental observation of such a reduction will
require strong fields. For example, a �20,20� armchair tube
with a 20 T field gives a 0.4% reduction in the Fermi veloc-
ity.

For an electric field we have

ṽF = vF�1 − �v2U2� . �8�

A field of strength 0.1 V/nm corresponds to a reduction in the
Fermi velocity of a �10,10� tube of roughly 10%. The term
�v2�n2 /�2 for large tubes; its exact form is given by Eq.
�A4c�.

As mentioned in Sec. I, the reduction in the Fermi veloc-
ity has been noted by several authors.15–17 In these papers the
carbon nanotube was modeled as a smooth cylinder and the
low-energy electronic behavior was put in by hand. Our re-
sults are in agreement with these results in the limit of small
fields and large n �in the regime that perturbation is valid�.
Additionally, by taking into account the geometry of the arm-
chair nanotube, we find that either a magnetic or electric field
alone will shift the Fermi points. That is, the nanotube still
has the same low-energy spectrum with renormalized values
of kF �whose precise form is given by Eq. �A5��. The band
structure of a �5,5� nanotube in the presence of electric and
magnetic fields of various strength is shown in Figs. 2 and 3,
respectively.

B. Case of E� �B� (�=� Õ2)

Mutually perpendicular fields break both the time-reversal
and particle-hole symmetries of the band structure. The left
and right movers now move with different speeds. For a

magnetic field in the negative y direction and an electric field
in the positive z direction, we have

ṽr = vF�1 − �v1b2 − �v2U2 � �v3bU� , �9�

where r is + for right movers and − for left movers. The
expressions for �v3 is given by Eq. �A4d�; for large tubes
�v3�n /�. For the fields we consider, E /B is roughly the
same order of magnitude as vF and thus it is natural to expect
the band structure will reflect the behavior of a classical ve-
locity selector. Indeed, the asymmetry of the velocity in the
right- and left-moving branches is expected from elementary
considerations. For a charged particle moving on a smooth
cylinder in the presence of mutually perpendicular transverse
magnetic and electric fields, the direction of the force caused
by the magnetic field depends on the particle’s direction of
motion, whereas the electric field remains the same. Hence,
for fixed kinetic energy, the force in the transverse direction
causing the particle to spiral is different for different direc-
tions of motion thereby giving rise to different velocities for
left and right movers.

Another prominent feature of the band structure in this
case is a relative energy shift with respect to the two Fermi
points. Near the two Dirac points corresponding to �
= � ��kF� �

4�
3a �, we have

�r��k� = �rṽr�k − �k̃F� + �t�s + O��k2� . �10�

By definition, k̃F is the momentum for which the left- and
right-moving bands for a given Fermi point are degenerate,
and again is generally different from 4� /3a in the presence
of fields. The precise forms of kF and �s are given by Eqs.
�A5� and �A6�, respectively. The solid blue lines in Fig. 4
�for �=+� and Fig. 5 ��=−� indicate low-energy dispersion
of a �5,5� nanotube in the presence of crossed electric �v
=0.2� and magnetic �b=0.4� fields.

C. Case of �Å
�
2

The presence of both electric and magnetic fields will
generically open gaps at the Fermi points. The size of this
gap is given by

�gap � tbU

2�3 cos
�

3n

1 + 2 cos
�

3n

�cos �� . �11�

For example, a �15,15� tube parallel electric and magnetic
fields of 1 V/nm and 10 T, respectively, gives �gap�4 meV.
For electric and magnetic fields which are not parallel, this
gap is weakly indirect.

The degeneracy associated with the graphene Fermi
points stems from the equivalence of the two sublattices. For
example, a two-dimensional honeycomb lattice with A and B
sublattices composed of different types of atoms would ge-
nerically have a gap.5 Now, in a nanotube, gaps can arise for
different reasons. For example, the gap associated with a
semiconducting tube occurs because the quantized bands
miss the Dirac point of the underlying graphene lattice. Such
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FIG. 5. �Color online� Spectrum of a �5,5� carbon nanotube near
�=+ Dirac Fermi point �field-free value �kF=4� /3a by the vertical
line� in the presence of transverse electric and magnetic fields

�U / t=0.2 and b=0.4�. The angle between E� and B� being 0 �black
dotted�, � /4 �red dot-dashed�, and � /2 �blue solid� �from outer to
inner�. The horizontal axis indicates the value of q, where q=ka; the
vertical axis is given in units of t, the hopping integral �t�3 eV�.
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a gap can be closed by applying a magnetic field �of a spe-
cific strength� parallel to the tube’s axis. In the present case
however, the gap arises from an energy difference associated
with the two sublattices and therefore cannot be so closed.
Not surprisingly, the gap described here vanishes precisely
when the electric and magnetic forces on a classical charged
particle traveling along the tube are either parallel or antipar-
allel.

From Figs. 4 and 5 we clearly see that as the angle be-
tween the fields varies, the particle-hole symmetry and the
valley degeneracy, as well as the symmetry between left- and
right-moving spectra, are broken. The degree of breaking of
these symmetries is greatest in the case that the fields are
perpendicular. On the other hand, these symmetries are pre-
served when the fields are parallel or antiparallel and the gap
is at its maximum. This angle-dependent gap can be mani-
fested in the transport measurement, e.g., the conductance
can be 4e2 /h, 2e2 /h, or zero, depending on whether there are
four, two, or zero conducting channels �including spin�.

D. Low-energy modes

In order to study the low-energy physics of electronic
excitations about the Fermi energy for all the cases described
above, we can identify the fermionic operator on the cylin-
drical surface of the tube as approximately

�
�x,s� = 	
p�

�p��x,s��p�
�x� , �12�

where �p�
�x� is the one-dimensional field operator at the
point x along the tube axis associated with the A and B
sublattices �p=A�+� /B�−��, Fermi points �kF=�4� /3a ��
=��, and spin 
= ↑ �+� / ↓ �−�. The Bloch wave function
�p��x ,s� retains detailed information about the response of
the electronic wave functions to the applied fields.7,8 While
the sublattice basis �indexed by p� is convenient for discuss-
ing these wave functions, it does not diagonalize the hopping
interaction. We therefore transform to the right- and left-
moving bases �r=R�+� /L�−�� via the transformation �p�


=	rUpr�r�
, where U†
yU=
z.
8 This gives a kinetic-energy

term

H0 = − i�	
r�

 dxrvr�r�

† �x�r�, �13�

where as shown above a generic field configuration can give
rise to the possibility that vR�vL.

The gap which arises as a result of the presence of both
electric and magnetic fields �Eq. �11�� can be incorporated
into our Hamiltonian by a mass term

Hgap1 = 	
r�


 dx

�gap

2
�r�


† �−r�
. �14�

Note that this mass term is of a different form than that
considered in the exhaustive zero-field study by Egger and
Gogolin8 �which had the form i

�gap

2 r�r�

† �−r�
�. Similarly, the

effect of the shift associated with the Fermi points can be
described by the term

Hgap2 = 	
r�


 dx�

t�s

2
�r�


† �r�
. �15�

While these gaps are a result of band-structure effects, it is
expected that the dominant gap producing effect would be
due to electron-electron interactions, partially describable
within the Luttinger-liquid formulation of the following sec-
tion. Such gaps, attributed to Mott insulating behavior, have
been recently observed in a dramatic fashion.21

III. LUTTINGER LIQUID FORMULATION

In this section we specialize to the case of gapless modes
for which interactions can be easily incorporated. As the sim-
plest case, when only a magnetic or electric field is present,
the kinetic piece of the Hamiltonian given in Eq. �13� now
has ṽ+= ṽ−� ṽF and �gap=0, i.e.,

H0 = − i�ṽF	
r�


 dx�r�


† �x�r�
. �16�

We use standard approaches such as bosonization to study
the effect of fields. Where appropriate, we include discus-
sions for the asymmetric case of ṽ+� ṽ−. We closely follow
the approach of Ref. 8 whose lucid pedagogical exposition
we do not repeat but instead confine our discussion to the
new field-dependent features.

The presence of fields does not alter the fact that the elec-
trons on a tube are locked into their lowest energy radial
mode. Hence, it is possible to study the low-energy excita-
tions in the presence of interactions using an effective
bosonized 1D Hamiltonian. Bosonization offers great simpli-
fication since many of the quartic interaction terms in the
fermionic language become quadratic once they are
bosonized.

The interaction term takes the general form

Hint =
1

2

 dr
 dr��


†�r��
�
† �r��U�r − r���
��r���
�r� ,

�17�

where �
�r� is the field in Eq. �12� describing low-energy
electrons.

Following Ref. 8, we employ the form of the Coulomb
interaction on the surface of a cylinder given by

U�x − x�,s − s�� =
e2/�

��x − x��2 + 4R2 sin2
 s − s�

2R
� + az

2

,

�18�

where R is the radius of the tube, x and s are the coordinates
defined in the previous section, and az�a is roughly the
thickness of the graphene sheet.8 The form of the interaction
in Eq. �17� is explicitly given in terms of two-dimensional
integrals. An effective interaction term involving purely lin-
ear integrals along the tube’s axis can be obtained by ex-
pressing �
�r� in terms of the linear and circumferential
fields as in Eq. �12�, and integrating out the circumferential
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degrees of freedom from Eq. �17�. Integration over the cir-
cumferential degrees of freedom generates quadratic terms
absent in the field free case.

The resulting effective interaction involves two-particle
scattering processes between fermions moving along the tube
axis denoted by the fields �r�
. The associated scattering
processes can be classified according to whether the incom-
ing particles preserve their Fermi-point quantum number �
when scattered—forward scattering ��FS�—or scatter across
the Fermi surface—backscattering ��BS�. In Ref. 8, a further
distinction is made in the forward-scattering events depend-
ing on whether the interaction potential is homogeneous over
the circumference of the tube ��FS0� or is able to distinguish
the microscopic differences which arise between sublattices
��FS1�. At this point, in order to obtain an effective low-
energy description of the interacting electrons, the one-
dimensional fermionic operators can be bosonized as in Ref.
8:

�r�
 =
�r�


�2�ac

exp�i�kFx + i�r�
� , �19�

where

�r�
 =
��

2
��c+ + r�c+ + ��c− + r��c− + 
�s+

+ r
�s+ + �
�c− + r�
�s−� . �20�

The bosonic fields �’s satisfy the commutation relations

��r�
�x�,�r���
��x��� = − i�r�rr������

� sgn�x − x�� ,

�21�

where r=� denotes the left and right movers, �=� indi-
cates the Fermi points, and 
=� represents the spin direc-
tion �↑ /↓�. The �r�
’s are the so-called Klein factors; they
enforce the anticommutation relations between different
channels,

��r�
,�r���
�� = 2�rr������

�. �22�

Moreover, the fields � j��x�’s �with j=c /s and �=�� and their
dual fields � j��x� �both are linear combinations of �r�
�x�� in
turn satisfy

�� j��x�,� j����x��� = −
i

2
� j j����� sgn�x − x�� . �23�

The effective density in a given channel takes the form

�̃r�
�x� =
r

2�
�x�r�
�x� . �24�

The kinetic energy associated with the linearly dispersing
fermionic modes is quadratic in the bosonized fields. As for
the interactions, the dominant contributions also come from
quadratic terms reflecting net density-density type interac-
tions. As in the field-free case, the �FS0 process has one
such contribution from the usual Coulomb form involving
the net charge density, which in the bosonized representation
is given by

H�FS,0 =
2

�

 dxṼ�k � 0���x�c+�2, �25�

where

Ṽ�k� �
2e2

�
��ln kR� + c0� �26�

is the Fourier transform of V�x� and c0 is a function of n �see
Eq. �B1��.

The presence of either an electric or magnetic field gives
rise to additional quadratic terms in the �FS0 process. These
terms have their origin in the nonzero angular-momentum
components of the circumferential wave function �r��x ,s� in
Eq. �12�. A detailed accounting of the radial-wave functions
�see Appendix B� shows that an electric field contributes a
term

H�FS,E =
 dx
2e2

�
�
 2

�
�h1U2��x�c+�2, �27�

whereas a magnetic field provides a contribution

H�FS,B =
 dx
2e2

�
�
 2

�
�h2b2��x�c−�2. �28�

In the presence of mutually perpendicular transverse electric
and magnetic fields, there is an additional contribution to the
interaction

H�FS,BE =
 dx
2e2

�
�
 2

�
�h3Ub��x�c−���x�c+� . �29�

The values of h1, h2, and h3 are given in Appendix B. The
Luttinger-liquid Hamiltonian takes into account all these
quadratic terms; other terms emerging from the interaction
potential are subdominant and can be considered perturba-
tively.

An intuitive physical picture for the origin of the field-
dependent interaction terms above can be obtained by noting
that in Eq. �A7� the charge density for �r� is of the approxi-
mate form 1+ t1ru sin s

R + t2� cos s
Rb. This is broadly consis-

tent with the magnetic field coupling to momentum via �p
−eA /c�2 and hence to �kF, resulting in a term ��b. More-
over, the electric potential differs slightly between adjacent A
and B sites, and in turn couples to left and right movers
differently, resulting in a term �rU. Equation �17� thus gives
rise to interactions among the charge densities �x�c� and
current ��c+. We therefore obtain the following nonvanish-
ing terms: �1� �x�c+, �2� �x�c−�b, and �3� �x�c+�u. Hence,
one expects the resulting interaction terms given above.

The sum of the kinetic energy and interactions described
by Eqs. �16�, �25�, �27�, and �28� gives the total Hamiltonian
that we focus on in this paper

Htot = H0 + H�FS,0 + H�FS,E + H�FS,B. �30�

For the case of a single field �either magnetic or electric� the
dispersion remains symmetric and therefore Eq. �30� can be
written in the form
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Htot = 	
a=�c/s

va

2

 dx� 1

Ka
��x�a�2 + Ka��x�a�2� . �31�

Ka=1 reflects no interactions in the “a” sector and Ka�1
reflects repulsive interactions. For the asymmetric case, the
diagonalization of the Luttinger-liquid Hamiltonian is tech-
nically more complicated but conceptually simple given the
quadratic form of the relevant terms.22 Below we discuss the
form of the various Luttinger parameters and the related
physics.

A. Luttinger parameters for B=0, EÅ0

As seen above, for just an electric field present, interac-
tions only affect the net charge sector c+ and renormalize the
velocity in this sector

vc+Kc+ = ṽF +
8e2h1U2

��
, �32�

vc+/Kc+ = ṽF +
8e2

��
��ln kcR� + c0� , �33�

where kc�1 /L is the lower cutoff provided by the length L
of the tube. This yields a Luttinger parameter value,

Kc+ =� 1 +
8e2h1U2

��ṽF�U�

1 +
8e2

��ṽF�U�
��ln kcR� + c0�

, �34�

in the low-field limit, where ṽF�U� is the field reduced Fermi
velocity calculated in the previous section. Figure 6 shows
the dependence of Kc+ on U. In the other sectors, the Lut-
tinger parameters retain their noninteracting value Kc−
=Ks�=1. The Luttinger model predicts power-law behavior
for the tunneling density of states3 with exponents �end
= �Kc+

−1−1� /4 and �bulk= �Kc++Kc+
−1−2� /8 for tunneling into

the end or bulk of a tube, respectively.

A smaller value of Kc+ implies stronger repulsive interac-
tions in the net charge sector. Here, two tendencies compete;
in Eq. �34�, ṽF�U��vF increases the interaction strength
relative to the kinetic energy. On the other hand, the direct
effect of the field, as reflected in the h1U2 term in Eq. �34�, is
to decrease the relative interaction strength. The former ef-
fect is dominant of the latter; hence as shown in Fig. 6, Kc+
is monotonically decreasing in increasing field strength.

B. Luttinger parameters for BÅ0, E=0

In the presence of a magnetic field, the Luttinger param-
eter deviates from the noninteracting value of unity not only
in the net charge sector,

Kc+
−1 =�1 +

8e2

��ṽF�b�
��ln kcR� + c0� , �35�

but also in the relative charge sector,

Kc−
−1 =�1 +

8e2h2b2

��ṽF�b�
. �36�

The spin sectors remain unaffected; Ks�=1.
For both cases c+ and c−, the reduction in the Fermi

velocity ṽF�b��vF increases the relative interaction strength,
thereby decreasing the values of Kc�. In addition, as re-
flected in the h2b2 coefficient in Eq. �36�, the field directly
decreases Kc− via the interaction term of Eq. �28� discussed
above. Figure 7 shows the dependence of Kc− on the mag-
netic field B. In this case, the Luttinger model predicts
power-law behavior for the tunneling density of states with
exponents �end= �Kc+

−1+Kc−
−1−2� /4 and �bulk= �Kc++Kc+

−1+Kc−
+Kc−

−1−4� /8. Unfortunately, this effect is small; even for
fields as large as 100 T, Kc− is reduced from unity only by
about one half of a percent for a �20,20� tube �see Fig. 7�.
Nevertheless, for multiwalled nanotubes, the outermost layer
can have n as large as 100, and hence, the field only needs to
be as large as 4 T to see a 0.5% reduction.

The deviation of Kc− from unity leads to the fascinating
prospect of spin-band-charge separation. In one-dimensional
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FIG. 6. �Color online� Luttinger parameter Kc+ of a nanotube as
a function of electric field strength E �in V/nm� for different values
of n: n=20 �solid blue line�, n=40 �red dot-dashed line�, and n
=60 �black dotted line� �corresponding to tubes of radii of 1.38,
2.75, and 4.13 nm, respectively�. The field-free value of the Lut-
tinger parameter is given by Kc+

0 =0.2.
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FIG. 7. �Color online� Luttinger parameter Kc− of a nanotube as
a function of magnetic field strength B �in tesla� for different values
of n: n=20 �solid blue line�, n=40 �red dot-dashed line�, and n
=60 �black dotted line�.
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systems, the possibility of spin-charge separation stemming
from different interactions within the two sectors has been
extensively discussed and observed in the case of etched
quantum wires.23 Here we predict that nanotubes in trans-
verse magnetic fields can undergo yet another separation due
to the interactions in the c− sector. Thus we propose that, in
this case, the four modes travel at three different velocities:
vc+= ṽF�b� /Kc+, vc−= ṽF�b� /Kc−, and vs�= ṽF�b�.

C. Luttinger parameters for E� �B�

As shown in Fig. 7, the spin-band separation discussed
above for purely magnetic fields is a small effect even for
very large fields. The prospect of observing this effect is
greatly improved for crossed electric and magnetic fields. In
this case, the term which mixes the c+ and c− sectors is
given by Eq. �29� and the values of h3 are significantly larger
than the corresponding terms h1 and h2 �see Appendix B�. As
mentioned previously, the case of crossed fields gives rise to
an asymmetric dispersion, and it leads to cross terms
��x�a���x�a� with coefficients proportional to the difference
vR−vL, which is quadratic in the external fields. The full
treatment of these and the cross term in Eq. �29� is beyond
the scope of the current paper. However, it is possible to get
a sense of the order of magnitudes involved by noting that in
the present case the dominant field effect is given by Eq.
�29�. We shall in the following study the effect of this cross
term by ignoring the asymmetry in the dispersion. The rel-
evant terms in the Hamiltonian are

H =
vc+

0

2

 dx� 1

Kc+
0 ��x�c+�2 + Kc+

0 ��x�c+�2�
+

vF

2

 dx���x�c−�2 + ��x�c−�2� + g
 dx��x�c−���x�c+� ,

�37�

with Kc+
0 =vF /vc+

0 defining the field-free values. In diagonal-
izing the resulting Hamiltonian, care is required to ensure
that transformed fields respect commutation relations such as
those of Eq. �21�. It is straightforward to show that the re-
sulting plasmonic modes retain linear dispersions having as-
sociated velocities and Luttinger parameters given by

v�
2 =

vF
2

2
�1 + 
vc+

0

vF
�2

���
vc+
0

vF
�2

− 1�2

+ 4
gvc+
0

vF
2 �2� ,

Kc� � vF/v�, �38�

where g is the coefficient of the ��x�c−���x�c+� term and is
given by g=4e2h3Ub /��. The associated tunneling density
of states into the bulk of the tube is given by

�bulk =
1

8

 1

Kc+
0 + Kc+

0 − 2� +
1

4
r�

g

vF
+ O�g2� . �39�

where r and � indicate the quantum numbers of the electron.
This expression differs from the usual form �see the expres-
sions below Eq. �34� and below Eq. �34�� because of the
unusual charge-current coupling term in the interactions.

Figure 8 shows the dependence of Kc− on electric field for
a �20,20� nanotube �with Kc+

0 =1 /5� in the presence of a 5 T
magnetic field. Interestingly, the fields render Kc− larger than
unity, reflecting tendencies toward perfect conduction in the
c− sector. Furthermore, the values attained by Kc− show sig-
nificant deviation from unity, making it feasible to observe
the proposed spin-charge-band separation for these field con-
figurations. Figure 9 shows a plot of Kc+ for the same situa-
tion.

IV. LUTTINGER LIQUID PHASES

The field tuning of the Luttinger parameters discussed
in the previous section offers a viable way of tuning the
ground state of the nanotube through different phases and
different ordering tendencies. In the absence of fields,
Egger and Gogolin8 performed an involved analysis using
renormalization-group arguments, refermionization, and con-
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FIG. 8. �Color online� Luttinger parameter Kc− of n=20 �solid
blue line�, n=40 �red dot-dashed line�, and n=60 �black dotted line�
carbon nanotubes as a function of electric field strength E �in V/nm�
in the presence of a 5 T magnetic field �tube has field-free Luttinger
parameter Kc+

0 =0.2�. See Eq. �38�.
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FIG. 9. �Color online� Luttinger parameter Kc+ of n=20 �solid
blue line�, n=40 �red dot-dashed line�, and n=60 �black dotted line�
carbon nanotubes as a function of electric field strength E �in V/nm�
in the presence of a 5 T magnetic field �tube has field-free Luttinger
parameter Kc+

0 =0.2�. See Eq. �38�.
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siderations of various susceptibilities to predict the ordering
tendencies of the nanotube as a function of Luttinger param-
eters and temperature. In particular, the “Luttinger liquid re-
gime” is the easiest to experimentally access although recent
experiments have shown spectacular evidence for gapped
Mott insulating behavior.21 In the Luttinger-liquid regime,
wherein all four sectors c� and s� remain ungapped,
the prediction is that, for the range of interaction values
Kc+�1 /5, the system tends to show an intersublattice spin-
density wave �SDW�� ordering while for Kc+�1 /5 it
tends to show intersublattice charge-density wave �CDW��
ordering, where the corresponding operators are defined,

respectively, as ÔCDW��	p�
�p�

† �−p��
, and ÔSDW�

�	p�

�p�

† �−p��
,. These analyses involved considering

operators associated with certain orderings and determining
the slowest decaying, equivalently, the most relevant opera-
tor �i.e., of the smallest scaling dimension�.

Here, we discuss the key changes that occur in the Lut-
tinger regime in the presence of fields. We focus on the
Luttinger-liquid regime and consider the manner in which
the field-tuned change in Luttinger parameters affect various
susceptibilities. We only consider the cases where either only
an electric or magnetic field is present; the cases when both
fields are present are extremely involved and beyond the
scope of this paper. We do not take into account the effect of
nonquadratic bosonic terms generated by the fields; even if
relevant, we expect that the bare coupling associated with
these terms is so small that they only come into play at very
low temperatures and not in the Luttinger-liquid regime.

A. Case of B=0, EÅ0

For the case of only an electric field present, as discussed
above, the effect of the field goes purely into changing the
value of Kc+. Given that experimentally the value of Kc+ is
around and oftentimes higher than 1 /5, and that the field
tends to reduce the value of Kc+, the electric field provides
a unique means of tuning from a tendency toward �SDW��
ordering to that of �CDW�� ordering �see, for example,
Fig. 6�.

B. Case of BÅ0, E=0

The case of only a magnetic field present, as discussed
above, presents a slightly more complex situation in which
both Kc+ and Kc− deviate from unity. As a result, various
susceptibilities acquire a Kc− dependence in their scaling be-
havior. For instance, operators associated with intrasublattice

ordering such as ÔCDW0�	p�
�p�

† �p−�
 and ÔSDW0

�	p�

�p�

† �p−�
, which in the absence of fields are mar-

ginal, both acquire a scaling dimension �Kc−+Kc−
−1+2� /4.

Tendencies for superconducting order become weaker in the

presence of fields; the singlet pairing operator ÔSC0
�	p�

�p�
�p−�−
 acquires the scaling dimension �Kc−
+Kc+

−1+2� /4.
To determine which ordering dominates, we consider the

most relevant candidates: the CDW� and SDW� operators,
both of which have scaling dimension �Kc−+Kc++2� /4, parts

of the second-order CDW� operator denoted by ÔCDW�
2 that

have scaling dimension Kc−+Kc+, and a fourth order CDW�

operator denoted by ÔCDW�
4 which has scaling dimensions

4Kc+. Comparing these exponents shows that ÔCDW� and

ÔSDW� are more relevant than ÔCDW�
4 for 15Kc+�2+Kc−, a

condition easier to satisfy in the presence of fields than in the
field-free case since Kc− can then be less than one. Now

ÔCDW�
2 is more relevant than ÔCDW�

4 for 3Kc+�Kc−. For

ÔCDW�
2 to be more relevant than ÔCDW� and ÔSDW� requires

Kc++Kc−�2 /3, a condition requiring inaccessibly strong in-

teractions. Finally, to determine whether ÔCDW� or ÔSDW�

dominates, we appeal to the arguments of Ref. 8; at lower
temperatures where the physics is dominated by certain
strong-coupling fixed points, pinning of the �s+ mode sup-

presses ÔCDW�, making its magnitude in the Luttinger phase

smaller than that of ÔSDW�. Although the methods of refer-
mionization employed to reach this conclusion are no longer
valid for arbitrary values of Kc−�1, the strong-coupling
analysis still holds and we believe that a similar conclusion
can be reached for the finite magnetic field situation.

To summarize our results, while a detailed analysis and
considerations of operators that are not taken into account in
Ref. 8 are in order, the most likely scenario is that the nano-
tube in the Luttinger regime for the B�0, E=0 case is domi-
nated by SDW� ordering tendencies for 15Kc+�2+Kc− �the
more likely scenario gives that the deviation of Kc− from
unity is not very large� and CDW� ordering tendencies for
15Kc+�2+Kc−.

V. QUANTUM DOT PHYSICS

For high resistance contacts or sufficiently low
temperatures,3 the nanotube shown in Fig. 1 is only weakly
coupled to the leads, thus forming a quantum dot.24 The be-
havior of such dots and related Coulomb-blockade effects
have been extensively studied by theory and experiment.7,25

Typical of quantum dot physics, Coulomb-blockade peaks
have provided information on single-particle level spacings
and charging energies associated with the dot, as well as
phase shifts due to scattering at the edges of the nanotube
dot. Moreover, under certain conditions, the nanotube quan-
tum dot has revealed a periodicity of four associated with the
degeneracy emerging from the band and spin degrees of free-
dom. Recent work has also investigated the effects of a trans-
verse magnetic field on quantum dot behavior and the asso-
ciated single-particle and charging energies.19 Here, we study
the role of boundary conditions on nanotube quantum dot
physics, which requires subtle considerations in the presence
of fields. We then discuss the quantum dot behavior de-
scribed by a finite-sized version of the nanotube Luttinger-
liquid Hamiltonian which takes into account relevant bound-
ary conditions.

A. Field-dependent single-particle energy spectrum

As is well known, finiteness of the tube length leads
to a quantized single-particle spectrum which depends on
the boundary conditions at the ends of the tube. We assume
that the wave functions at a given end are related by
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�R�
=	��
�M���

��L��
�, where M is a matrix which de-
pends on the microscopic details of the tube end but is as-
sumed to be energy independent. We specialize to the case
that the boundary conditions do not affect spin; that is, we
take M���

�=S����

�, where �

� is the Kronecker delta
function. We thus assume the absence of magnetic impurities
and local moments at the tube ends.

In order to obtain the appropriate boundary conditions for
the case of an asymmetric dispersion, we demand that the

first quantized kinetic-energy operator Ĥ0=−i�	r�rvr�x to-
gether with the boundary conditions is self-adjoint. This
treatment does not account for the effect of interactions on
the boundary conditions which would be more naturally dis-
cussed in terms of the bosonic fields. Such an analysis shows
that there is an additional term in the current proportional to
g2−g4 which vanishes for the density-density interaction
considered here.26,27 By definition,

��,Ĥ0�� = − i�	
r�

 dxrvr�r�

† �x�r�. �40�

Since the boundary effects are assumed to be independent of
spin, we have dropped the spin index. For an arbitrary spinor
� with �= ��R�L�T, where �R and �L are both two-
component spinors in the Fermi-point basis ��r= ��r+�r−�T�,
self-adjointness gives

��,Ĥ0�� = �Ĥ0�,�� . �41�

Integrating the left-hand side of this equation by parts gives

��,Ĥ0�� = − i 	
�=�


 dx�vR�R�
� �x�R� − vL�L�

� �x�L��

= − i 	
�=�

�vR�R�
� �R� − vL�L�

� �L��x=0,L + �Ĥ0�,�� .

Self-adjointness is satisfied as long as the boundary terms
vanish, and this leads to

�R� = S����L��, �42�

with �vR /vLS unitary.
The details of the S matrix can vary for each experimental

setup and depend on physical attributes such as the substrate,
the hardness of the confining potential offered by the leads,
and the orientation of the tube’s sublattices with respect to
the leads. These parameters can be incorporated as variables
in the boundary conditions which can then be utilized to
obtain the single-particle spectrum. The most general version
of these boundary conditions are outlined in Ref. 28 via the
effective-mass model.

For a given S matrix the spectrum of single-particle states
can be determined by applying the condition of Eq. �42� at
both ends, and demanding that both the left and right movers
have the same energy. The two Fermi points give rise to two
sets of bands. The energy between two adjacent states in the
same band is equal to ��vH /L, where vH is the harmonic
mean,

vH =
2vRvL

vR + vL
. �43�

However, the energy offset of the bands from the Fermi en-
ergy depends on the details of the S matrix. In general, the
two Fermi points will give rise to two sets of energy states
given by �n�vH /L+�1 and �n�vH /L+�2, where n�Z.

Since we are ultimately interested in the spacing between
Coulomb-blockade peaks, we focus on the energy difference
between bands which we define as �band=�1−�2 �and for
convenience we define �band such that ��band����vH /L�. We
examine two special cases for the S matrix; deriving the
�band for the most general scattering matrix would be a
straightforward extension. First, consider the case in which
the tube ends do not mix the Fermi points although we allow
the phase shift the electron suffers at the tube end ���x� to be
different for the two Fermi points ��=�� and the two tube
ends �x=0,L�. In this case we have S++�x�=�vL /vRei�+�x�,
S−−�x�=�vL /vRei�−�x�, and S−+�x�=S+−�x�=0. The energy off-
set between the bands takes the form

�band =
��vH

L
F� �̃1

2�
+

2t�s

��vH/L
� , �44�

where �̃1= ��+�L�−�+�0��− ��−�L�−�−�0�� and F�x�=x− �x�,
with �x� as the greatest integer less than or equal to x, and the
quantity t�s is the field-induced offset between the two
Fermi points as defined in Eq. �10�. �See Appendix C for
derivation.�

Now, consider an electron that is completely scattered into
the opposite Fermi point at both boundaries. For simplicity
we take S����x�=�vL /vRei��x���,−��. In this case, the splitting
between bands takes the form

�band =
��vH

L
F� 2

�
kFL +

2t�s

��vH/L
vR − vL

vR + vL
�� . �45�

For the limiting case of no fields �this also means that
vH=vR=vL�vF�, one expects the existence of sets of four
single-particle states, namely, two degenerate sets of spin
states and two sets of band states whose energy splitting
depends on the various phase shifts and the extent to which
modes at the two Fermi-point mix. For no Fermi-point mix-

ing, the interband splitting is �vF�̃1 /2L while for complete
Fermi-point mixing, the splitting is

��vF

L F�2LkF /��.
Coulomb-blockade experiments have shown an interband
band splitting of about 10% �Ref. 11� of the ��vF /L. Such a
persistent approximate degeneracy in band energies for a
range of tubes29 suggests that the magnitude of Fermi-point
mixing in these samples is minimal.

B. Tunability of energy subband splitting

As discussed above, the boundary conditions in a given
experiment are not directly observable since �band depends
on several parameters. Fields provide a way of controlling
�band as well as studying its physical origin in a particular
sample. By scanning through various field strengths, the
variation in the band offset can reveal information about the
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nature of boundary scattering. For example, the extent to
which a given tube interpolates between the two expressions
given in Eqs. �44� and �45� can be used to determine the
importance of �Fermi-point� backscattering at the tube ends.
In the case of a natural band degeneracy in a tube �that is, no
Fermi-point mixing at the ends of the tube and �̃1=0�, both
electric and magnetic fields need to be applied to break the
degeneracy; the magnitude of the subband splitting as a func-
tion of fields can be extracted from Eq. �44� by setting �̃1
=0. An alternative approach for breaking the subband degen-
eracy was explored by Ref. 25 in which a nonuniform exter-
nal potential along the tube was applied. However, this ap-
proach becomes infeasible for the case of a diagonal
scattering matrix since it relies on band curvature away from
half filling.

Thus combining electric and magnetic fields can provide a
means of breaking and tuning the degeneracy of the quantum
states of electrons inhabiting the nanotube quantum dot. Of
the four possible states discussed above, where the direction
of spin is defined with respect to the magnetic field, an extra
electron would occupy the ground state, which can be chosen
to be any of the four depending on the direction of the fields.
The quantum state can be characterized by a superspin in-
habiting a SU�2� � SU�2� band and spin space. The enhanced
control of the spectrum of nanotubes that fields offer would
obviously have important implications for any potential
quantum information applications.

C. Coulomb-blockade physics

We now consider quantum dot phenomena by taking into
account interaction effects in addition to the single-particle
level spacing analysis of the previous subsections. To present
a coherent picture, we work within the context of the
Luttinger-liquid description for field configurations that re-
tain gapless modes. This approach neglects the exchange en-
ergy within a dot, which while shown to be present, is often
much smaller in magnitude than the level spacing and inter-
action energy.11 While our treatment captures salient features
of quantum dot behavior, a full analysis of the Luttinger-
liquid formulation for the most general boundary conditions
is yet to be performed.

Following the method of Ref. 7 �see also Refs. 30 and
31�, for a finite-sized version of Eq. �30�, we decompose the
bosonic fields �a and �a into sums of topological modes �a

0,
corresponding to a net occupation number of the a sector
Na= 2

��
�0

L�x�a
0dx and harmonic modes corresponding to plas-

mons. For simplicity, we consider the case of no Fermi-point
scattering so that the Fermi-point basis as defined by Eqs.
�20� and �24�, and the band basis which diagonalizes the
boundary conditions in the previous subsection coincide �and
therefore take a=c /s��. Assuming the boundary conditions
derived in the previous section, we integrate out the x depen-
dence for the topological sector in the finite-sized version of
Eq. �30�. The resulting Hamiltonian associated with “charg-
ing energy” for each topological sector takes the form

Ha =
1

8
�aNa

2, �46�

where �a= �
��vH

L +4Ea� and Ea is equal to the interaction en-
ergy of a given mode. The interaction energy for the net

charge sector comes from the forward-scattering contribution

of Eq. �25� to yield Ec+� Ṽ�k� /L. The contribution due to the
electric field given by Eq. �27� is found to be fourth order in
fields and can thus be neglected. The magnetic field, how-
ever, does contribute to the charging energy; from Eq. �28�, it
can be shown that Ec−=2e2h2b2 /�L. This expression repre-
sents an upper bound that assumes the limit of no Fermi-
point mixing.

The topological modes correspond to the addition of
charges onto the dot; in addition, plasmon modes that corre-
spond to harmonic vibrations of the densities in the various
sectors are present. In principle, the procedure employed in
Refs. 7 and 30 to derive the structure of these plasmonic
excitations can be generalized to the case of the asymmetric
dispersion by incorporating the asymmetric description in
Ref. 22. Here we forego such a derivation; most quantum dot
experiments involve the adiabatic tuning of parameters such
as gate voltage and thus probe purely ground-state properties
determined by the topological sectors.

In the presence of a gate voltage VG, the Hamiltonian
associated with the topological modes of the nanotube quan-
tum dot is given by

HL = 	
a=�c/s

Ha − �Nc+ +
1

2
�bandNc− − �ZNs+, �47�

where � is essentially eVG and the term �Z=�BB accounts
for the Zeeman splitting. The hierarchy in energy scales can
be summarized for a typical tube length of L=500 nm. The
intrasubband splitting is 3.3 meV. Therefore we have that
�c−��s+/−=3.3 meV. The charging energy is then �c+
=47.7 meV. Consider a tube for which the ends of the tube
do not appreciably change the Fermi point. In that case the
sign of �band can be changed by reasonable electric and mag-
netic field values �for example, this is true for an n=15 tube,
a 6 T magnetic field, and an electric field of order 1 V/nm�.
Finally, �B�0.058 meV /T and therefore for most situations
the Zeeman splitting will be at least an order of magnitude
smaller than the other effects considered here.

The Hamiltonian in Eq. �47� forms a starting point for
analyzing quantum dot and Coulomb-blockade behavior in
short nanotubes. Typically, conductance is measured across
the tube as a function of the applied gate voltage VG and a
bias voltage VB; while for the most part, energetic costs im-
pede the flow of electrons, at special degeneracy points that
equally favor an occupation of N and N+1 electrons, zero-
bias Coulomb-blockade conductance peaks can be observed.
Given that the occupation numbers Na with a= �c /s ,�� are
good quantum numbers, the net energy of the system EL
= �HL� for a given configuration of electrons corresponds to a
given combination of eigenvalues of Na. The equilibrium
configuration of electrons on the quantum dot can thus be
derived by minimization, i.e., by requiring

�EL

�Na
=0 for all Na

sectors, subject to the physical constraint that electron occu-
pation numbers N�=�,
=↑/↓ take on integer values. The rela-
tionship between these two bases is given by Nc�= �N+↑
+N+↓�� �N−↑+N−↓� and Ns�= �N+↑−N+↓�� �N−↑−N−↓�.

As an illustrative example, consider the Coulomb-
blockade situation for the simple case of no fields, no band,
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or Zeeman splitting ��band=�z=0 and only the charging en-
ergy in the c+ sector is nonzero�. Applying the condition that
�EL

�Na
=0 gives �c+Nc+−4�=0 and Nc−=Ns+=Ns−=0 �where �

is varied by VG�. These conditions suggest that all the states
at a given energy level will fill before filling the subsequent
energy level. Now, as the chemical potential is increased, the
first extra electron added onto the dot can occupy any of the
degenerate states of the ��= � ,
= ↑ /↓� space. Suppose that
this electron goes in the �=+ band with its spin up. The state
of the tube is then characterized by the quantum numbers
�Nc+ ,Nc− ,Ns+ ,Ns−�= �1,1 ,1 ,1�. Further increasing the
chemical potential by an amount Ec+ will add the next elec-
tron to any of the remaining three states. For example, if the
filling obeys Hund’s rule �i.e., assuming the exchange inter-
action which we have thus far neglected� then band �=−
would be filled with spin-up electron thus giving the state
�2,0,2,0�. An additional third electron can occupy +↓ or −↓
state. The energy cost for adding each of these extra elec-
trons is Ec+, reflecting the Coulomb charging energy. How-
ever, the fifth extra electron requires a chemical-potential
increase of

��vH

L +Ec+, reflecting the Coulomb energy as well
as the excitation energy required to occupy the next energy
level. This analysis, executed within the Luttinger-liquid de-
scription, reproduces the periodicity of four observed in
experiment.11

In the presence of fields and intrinsic subband splitting, an
analysis similar to the one above can be performed for al-
tered values of � and Ka’s, and the orders of magnitude dis-
cussed after Eq. �47�. We take �Z�0 and �band�0. Further-
more, suppose that for a given tube that a nonzero magnetic
field gave Ec−��band /2. In that case, the tendency to mini-
mize Nc− would give rise to a shell filling opposite to the
usual Hund-type filling. For example, the order in which
states are filled could take the form −↑ ,−↓ , + ↑ , +↓ or
equivalently �1,−1,1 ,−1�→ �2,−2,0 ,0�→ �3,−1,1 ,1�
→ �4,0 ,0 ,0�. Instead of the Coulomb-blockade peaks being
of periodicity of four with spacings given by
Ec+ ,Ec+ ,Ec+ ,Ec++��vH /L, spacings become Ec++Ec− ,Ec+
−3Ec−+�band ,Ec++Ec− ,Ec++Ec−+��vH /L−�band.

The effect of shell filling in nanotube quantum dots has
been investigated experimentally by Liang et al.11 The four-
electron periodicity was clearly observed via transport mea-
surement. Parameters of charging and exchange energies
were determined. The above results, including field-
dependent Luttinger parameters, the effect of boundary con-
ditions, the band splitting, asymmetric dispersions, and addi-
tional two-electron periodicity can thus be studied in a
similar setup with transverse fields. Additionally, the Fabry-
Perot transmission resonances in the presence of a transverse
magnetic field predicted by Bellucci and Onorato,19 as well
as possible resonances by both transverse electric and mag-
netic fields �and their relative angles�, can be investigated in
the same experimental setup. While our arguments here have
been confined to adiabatic tuning and zero-bias conductance,
our approach can be used to investigate nonequilibrium phe-
nomena, temperature dependences, higher order tunneling
events such as cotunneling, and nonadiabatic tuning. Each of
these considerations, which is beyond the scope of this paper,
would involve excitations of the plasmonic modes.

VI. DISCUSSION; RELEVANCE TO EXPERIMENT

We have investigated the effects of transverse electric and
magnetic fields on armchair carbon nanotubes. We found that
fields can break several symmetries inherent to the carbon
nanotubes—the valley degeneracy, the left-right-mover de-
generacy, and the particle-hole symmetry. The magnitude of
a gap in the nanotube spectrum can be continuously tuned by
varying the strength and the relative angle of the two fields.
We also found that the electron-electron interaction is modi-
fied by both fields and thus Luttinger-liquid parameters can
be tuned by fields. In particular, an interesting consequence
is the possibility of spin-charge-band separation. We also dis-
cussed how the fields can be used to study boundary effects
in finite-sized tubes and to describe the Coulomb-blockade
physics in presence of fields.

Each of these salient features can become manifest in ex-
periment, some in dramatic ways. While we summarize these
experimental signatures here, details of the physics and or-
ders of magnitude can be found in the relevant section. At
the band-structure level, the reduction in the Fermi velocity
can be observed by measuring the particle level spacing in a
finite-size tube. The shift in the Fermi momentum induced by
either field may be detected by virtue of the associated Frie-
del oscillations around a dopant or impurity using a STM
�see, for example, Ref. 32�. For both fields present at an
arbitrary angle to one another, a continuous conduction gap
occurs at the Fermi energy, discernible via direct conduc-
tance measurements, shifts in Coulomb-blockade peaks, and
STM measurements.5,10,12 In the transport measurement, the
conductance peak can vary from 0 to 2e2 /h, and to 4e2 /h,
depending on the fields and the chemical potential. Perhaps
the most dramatic prediction of band-structure analysis is
that an electric and a magnetic field perpendicular to one
another, and the tube axis would give rise to a current carry-
ing ground state. Thus, a tube subject to this field configura-
tion placed across two leads should induce a measurable cur-
rent even in the absence of an applied voltage drop across the
leads.

In the regime in which SWNTs exhibit Luttinger-liquid
behavior, strong enough fields can give rise to significant
changes. The value of the Luttinger parameter associated
with the net charge sector can be tuned via either an electric
field, a magnetic field, or both. Furthermore, the presence of
an electric field gives rise to density-density interactions as-
sociated with the difference in densities in the two bands and
results in the deviation of the associated Luttinger parameter
Kc− from its noninteracting value of unity. The tunneling
density of states, a quantity ubiquitous to a range of experi-
ments including scanning tunneling microscope studies and
conductance measurements,3,5,9,33 would reflect these
changes in its power-law behavior.

As discussed in Sec. IV, changing the Luttinger parameter
via fields can result in tuning through phases having charge-
density-wave or spin-density-wave orders; such phases are
potentially measurable in STM and neutron-scattering ex-
periments. Another exciting prospect comes about in the tun-
ing of Kc−, namely, that of spin-band-charge separation. In
the past, momentum resolved tunneling experiments have re-
solved charge and spin modes moving at different velocities
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in quantum wires;23 in principle, a more elaborate version of
such an experiment could detect charge, spin, and band
modes moving at three different velocities in nanotubes.

In the quantum dot regime, the application of fields acts
as a controlled means of changing the Coulomb-blockade
structure of the dot, and could potentially have a plethora of
applications. For tubes that preserve the fourfold degeneracy
emerging from spin and band degrees of freedom in the ab-
sence of fields, the presence of fields can serve to break this
degeneracy. For tubes that show a lack of degeneracy, fields
provide a way of determining the origin of degeneracy
breaking. This effect has potential applications to quantum
information. Through achieving a desired amount of degen-
eracy breaking for the four states, fields can be an effective
means of initializing the quantum state of an extra electron
added on to the dot. Having initialized a quantum state, tran-
sitions can be induced to other states. Additionally, as has
been demonstrated for semiconducting quantum dot spin
states,34 superpositions can be created by applying oscillating
fields. For the energies quoted above, oscillation frequencies
would be on the order of 1011 Hz.

To conclude, transverse fields induce a rich range of
physical effects in the electronic properties of SWNTs from
band-structure effects to one-dimensional behavior to quan-
tum dot physics. Several of these features are very much
within the reach of current experimental capabilities and are
of both fundamental and applied value.
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APPENDIX A: BAND-STRUCTURE CALCULATION

In the absence of any fields, the eigenstates of an infi-
nitely long armchair nanotube are superpositions of the states
��A/B�� defined by Eq. �1�. For the particular case of an
armchair nanotube Eq. �4� gives

��A
���HB��B

��

= −
t

N
	

s

ei2����−���s/L��ei2��a/�3L

+ 2e−i2��a/2�3L cos� kya

2
+ �3B

�e�
�

 L

2�
�2

��cos
2�

L
s − cos

2�

L

s −

a

2�3
���� ,

where b=
�3B�e�L2

4�2�
. For small magnetic fields �b�1� we have

��A
���HB��B

�� = tb sin
ka

2
ei��/3n�1 − e�i�/3n� �A1�

for �−��= �1 mod N and

��A
0 �HB��B

0� = tb2 cos
ka

2

1 − cos

�

3n
� . �A2�

Applying perturbation theory near the Fermi points re-
quires care because of the near degeneracy of the left and
right movers. In this case, the usual procedure of first diago-
nalizing the nearly degenerate subspace fails because the ma-
trix elements within this subspace vanish to the order we are
working. However, there are matrix elements for transitions
to other energy levels ���0� and these matrix elements give
rise to an effective interaction between states in the nearly
degenerate subspace. The subspace can be diagonalized once
these additional interactions are taken into account.35

For the gapless case, the low-energy spectrum near half
filling is

�r��k� = �rṽF,r�k − �k̃F� + �t�s + O�k2� . �A3�

The renormalized Fermi velocity is given by

vr = vF�1 − �v1b2 − �v2Uy
2 � �v3bUy� , �A4a�

where

�v1 =

5 + 4 cos
�

n

3
1 + 2 cos
�

3n
�2 , �A4b�

�v2 =

3 + cos
�

3n
+ 2 cos

2�

3n

12
1 − cos
�

n
� , �A4c�

�v3 =

cos

�

6n
+ cos

5�

6n
�csc

�

6n

�3
1 + 2 cos
�

3n
�2 , �A4d�

and

k̃F = �4�

3a
+

Uy
2

2�3
1 + 2 cos
�

3n
� +

8
�3

sin2
 �

6n
�b2� .

�A5�

The shift between the two Fermi points �see Eq. �10�� is
given by

�s =

�3 sin
�

3n

1 + 2 cos
�

3n

bUy . �A6�
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For the case of mutually perpendicular fields discussed in
Sec. II, the electronic densities are given by the vector

�r��s� =
1

2�1 + g1ru cos
 s

R
+

�

6n
� − g2b� cos
 s

R
+

�

3n
�

1 − g1ru cos
 s

R
−

�

6n
� + g2b� cos
 s

R
−

�

3n
� � ,

�A7�

where the upper and lower components are the electronic
densities over the A and B sublattices, respectively. The con-
stants g1 and g2 are given by

g1 =
1

2
csc

�

2n
, �A8�

g2 = �3 csc
�

2n
. �A9�

APPENDIX B: INTERACTION TERMS

In order to find the form of the effective interaction V���
rr� ,

we need account for not only the radial dependence of the
wave functions but also for the physical separation between
the sublattices. Although the factorization performed in Eq.
�12� is an approximation, we may still account for the physi-
cal separation of the sublattices. We follow the approach in-
troduced in Ref. 8,

V���
rr� �x − x�� = 


0

2�R 

0

2�R dsds�

�2�R�2 � �r�
T �s�

�
 U�0� U�ac�
U�− ac� U�0�

��r����s�� ,

where U�d� is a shorthand for the Coulomb interaction with
an offset d, that is,

U�d� = U�x − x�,s − s� + d� , �B1�

where the right-hand side of this equation is given by Eq.
�18�.

The constant c0 which appears in Eq. �26� is given by

c0�n� = − � −
1

4�



0

2�

d� ln�cos2�

2
+ 
 �

�3n
�2� .

Similarly we find that the values of h1 and h2 defined in
Sec. III are given by �see Table I�

h1�n� = �c2
2 − c1

2�f1�n� + 2c1c2f2�n� + 2�c1
2 + c2

2�f3�n� ,

h2�n� = �c4
2 − c3

2�f1�n� + 2c3c4f2�n� + 2�c3
2 + c4

2�f3�n� ,

and

h3�n� = 2��c1c3 + c2c4�f1�n� + �c1c4 + c2c3�f2�n�

+ 2�c1c3 + c2c4�f3�n�� ,

where

f1�n� = 

−�R

�R dz

2�R
�ln�cos2z − ac

2R
+ 
 az

2R
�2�

+ ln�cos2z + ac

2R
+ 
 az

2R
�2��cos

z

R
,

f2�n� = 

−�R

�R dz

2�R
�ln�cos2z − ac

2R
+ 
 az

2R
�2�

− ln�cos2z + ac

2R
+ 
 az

2R
�2��sin

z

R
,

f3�n� = 

−�R

�R dz

2�R
ln�cos2 z

2R
+ 
 az

2R
�2� ,

and

c1 =
1

2
csc

�

2n
cos

�

6n
,

c2 =
1

2
csc

�

2n
sin

�

6n
,

c3 = �3 csc
�

2n
sin

�

6n
cos

�

3n
,

c4 = �3 csc
�

2n
sin

�

6n
sin

�

3n
.

APPENDIX C: SINGLE-PARTICLE SPECTRUM
WITH BOUNDARY SCATTERING

Here we illustrate the case in which the tube ends do not
mix Fermi points; that is, S++�x�=�vL /vRei�+�x�, S−−�x�
=�vL /vRei�−�x�, and S−+�x�=S+−�x�=0. Assume the wave
functions are

�R = 
AeikR+x

BeikR−x � , �C1�

TABLE I. Values of c0, h1, h2, and h3 for various tube sizes.

n c0 h1 h2 h3

5 −0.239 0.491 0.012 3.780

10 −0.064 0.697 0.040 10.370

15 −0.005 0.786 0.020 17.417

20 0.025 0.834 0.122 24.605

25 0.043 0.865 0.008 31.855

40 0.071 0.913 0.003 53.751

60 0.086 0.941 0.002 83.066
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�L = 
CeikL+x

DeikL−x � . �C2�

The energy spectrum for each branch is described by Eq.
�10�, e.g., �R,�=�vR�kR�
kF�� t�s. The self-adjointness
condition �Eq. �42�� at x=0,L gives


A

B
� =�vL

vR

ei�+�0� 0

0 ei�−�0� �
C

D
� ,


AeikR+L

BeikR−L � =�vL

vR

ei�+�L� 0

0 ei�−�L� �
CeikL+L

DeikL−L � .

This gives constraints on the four momenta

�kR� − kL��L = 2�n� + ���L� − ���0� , �C3�

where n� are arbitrary integers. For the �=+ branch, the
energy levels corresponding to kR+ and kL+ should be equal
�in order for the wave function to represent an eigenstate�.
Hence

�vR�kR+ − kF� + t�s = − �vL�kL+ − kF� + t�s , �C4�

which gives

kL+ = − kF − vR
2�n+ + �+�L� − �+�0�

�vR + vL�L
, �C5�

and thus

�+�n+� = �vH
2�n+ + �+�L� − �+�0�

2L
+ �s , �C6�

where vH�2vRvL / �vR+vL�. Similarly, for �=−, we have

�−�n−� = �vH
2�n− + �−�L� − �−�0�

2L
− �s . �C7�

Hence, we arrive at the interband energy difference

�band = �+�n+� − �−�n−� =
��vH

L

ñ +

�̃1

2�
+

2t�s

��vH/L
� ,

where �̃1= ��+�L�−�+�0��− ��−�L�−�−�0�� and the ñ� are se-
lected so that ��band� is less than the intraband spacing. Hence
we obtain Eq. �44�. A similar consideration leads to Eq. �45�.

1 S. Iijima, Nature �London� 354, 56 �1991�.
2 J.-C. Charlier, X. Blase, and S. Roche, Rev. Mod. Phys. 79, 677

�2007�.
3 T. Giamarchi, Quantum Physics in One Dimension �Oxford Uni-

versity Press, Oxford, 2004�.
4 H. Ajiki and T. Ando, J. Phys. Soc. Jpn. 65, 505 �1996�.
5 S. Saito, M. Dresselhaus, and G. Dresselhaus, Physical Proper-

ties of Carbon Nanotubes �Imperial College Press, London,
1998�.

6 S. Iijima and T. Ichihashi, Nature �London� 363, 603 �1993�; D.
S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy,
J. Vazquez, and R. Beyers, ibid. 363, 605 �1993�.

7 C. Kane, L. Balents, and M. P. A. Fisher, Phys. Rev. Lett. 79,
5086 �1997�.

8 R. Egger and A. O. Gogolin, Eur. Phys. J. B 3, 281 �1998�.
9 M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley,

L. Balents, and P. L. McEuen, Nature �London� 397, 598
�1999�.

10 Z. Yao, H. W. C. Postma, L. Balents, and C. Dekker, Nature
�London� 402, 273 �1999�.

11 W. Liang, M. Bockrath, and H. Park, Phys. Rev. Lett. 88,
126801 �2002�.

12 U. C. Coskun, T.-C. Wei, S. Vishveshwara, P. M. Goldbart, and
A. Bezryadin, Science 304, 1132 �2004�.

13 S. Sapmaz, P. Jarillo-Herrero, L. P. Kouwenhoven, and H. S. J.
van der Zant, Semicond. Sci. Technol. 21, S52 �2006�.

14 H. Ajiki and T. Ando, J. Phys. Soc. Jpn. 62, 1255 �1993�.
15 D. S. Novikov and L. S. Levitov, Phys. Rev. Lett. 96, 036402

�2006�.
16 H.-W. Lee and D. S. Novikov, Phys. Rev. B 68, 155402 �2003�.
17 S. Bellucci and P. Onorato, Eur. Phys. J. B 47, 385 �2005�; Ann.

Phys. 321, 934 �2006�.
18 N. Mason, private communication, 2008.
19 S. Bellucci and P. Onorato, Eur. Phys. J. B 52, 469 �2006�.
20 R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B

50, 14698 �1994�.
21 V. V. Deshpande, Bhupesh Chandra, Robert Caldwell, Dmitry S.

Novikov, James Hone, and Marc Bockrath, Science 323, 106
�2009�.

22 M. Trushin and A. L. Chudnovskiy, Europhys. Lett. 82, 17008
�2008�.

23 O. Auslaender, A. Yacoby, R. de Picciotto, K. W. Baldwin, L. N.
Pfeiffer, and K. W. West, Science 295, 825 �2002�; O. M. Aus-
laender, H. Steinberg, A. Yacoby, Y. Tserkovnyak, B. I. Halp-
erin, K. W. Baldwin, L. N. Pfeiffer, and K. W. West, ibid. 308,
88 �2005�.

24 M. A. Kastner, Phys. Today 46�1�, 24 �1993�.
25 Y. Oreg, K. Byczuk, and B. I. Halperin, Phys. Rev. Lett. 85, 365

�2000�.
26 V. I. Fernandez, Ph.D. thesis, Universidad Nacional de La Plata,

2002.
27 V. I. Fernandez, A. Iucci, and C. M. Naon, Eur. Phys. J. B 30, 53

�2002�.
28 E. McCann and V. Fal’ko, J. Phys.: Condens. Matter 16, 2371

�2004�.
29 A. Makarovski, L. An, J. Liu, and G. Finkelstein, Phys. Rev. B

74, 155431 �2006�.
30 M. Fabrizio and A. O. Gogolin, Phys. Rev. B 51, 17827 �1995�.
31 S. Eggert, H. Johannesson, and A. Mattsson, Phys. Rev. Lett. 76,

1505 �1996�.
32 P. T. Sprunger, L. Petersen, E. W. Plummer, E. Laegsgaard, and

F. Besenbacher, Science 275, 1764 �1997�.
33 H. W. C. Postma, M. de Jonge, Z. Yao, and C. Dekker, Phys.

Rev. B 62, R10653 �2000�.
34 F. H. L. Koppens, C. Buizert, K. J. Tielrooij, I. T. Vink, K. C.

Nowack, T. Meunier, L. P. Kouwenhoven, and L. M. K. Vander-
sypen, Nature �London� 442, 766 �2006�.

35 L. D. Landau and E. M. Lifshitz, Quantum Mechanics
�Butterworth-Heinemann, Oxford, 1958�.

TRANSVERSE-FIELD-INDUCED EFFECTS IN CARBON… PHYSICAL REVIEW B 79, 205421 �2009�

205421-15


